Premium
On the validity of the perturbation approach for the flow inside weakly modulated channels
Author(s) -
Zhou H.,
Khayat R. E.,
Martinuzzi R. J.,
Straatman A. G.
Publication year - 2002
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.355
Subject(s) - dimensionless quantity , superposition principle , reynolds number , perturbation (astronomy) , mathematics , amplitude , mechanics , open channel flow , mathematical analysis , flow (mathematics) , classical mechanics , physics , geometry , optics , quantum mechanics , turbulence
The equations governing the flow of a viscous fluid in a two‐dimensional channel with weakly modulated walls have been solved using a perturbation approach, coupled to a variable‐step finite‐difference scheme. The solution is assumed to be a superposition of a mean and perturbed field. The perturbation results were compared to similar results from a classical finite‐volume approach to quantify the error. The influence of the wall geometry and flow Reynolds number have extensively been investigated. It was found that an explicit relation exists between the critical Reynolds number, at which the wall flow separates, and the dimensionless amplitude and wavelength of the wall modulation. Comparison of the flow shows that the perturbation method requires much less computational effort without sacrificing accuracy. The differences in predicted flow is kept well around the order of the square of the dimensionless amplitude, the order to which the regular perturbation expansion of the flow variables is carried out. Copyright © 2002 John Wiley & Sons, Ltd.