Premium
Parallelization of a vorticity formulation for the analysis of incompressible viscous fluid flows
Author(s) -
Brown Mary J.,
Ingber Marc S.
Publication year - 2002
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.318
Subject(s) - vorticity , vorticity equation , vortex , vortex stretching , mathematics , galerkin method , domain decomposition methods , incompressible flow , boundary value problem , burgers vortex , mathematical analysis , finite element method , flow (mathematics) , classical mechanics , mechanics , geometry , physics , thermodynamics
A parallel computer implementation of a vorticity formulation for the analysis of incompressible viscous fluid flow problems is presented. The vorticity formulation involves a three‐step process, two kinematic steps followed by a kinetic step. The first kinematic step determines vortex sheet strengths along the boundary of the domain from a Galerkin implementation of the generalized Helmholtz decomposition. The vortex sheet strengths are related to the vorticity flux boundary conditions. The second kinematic step determines the interior velocity field from the regular form of the generalized Helmholtz decomposition. The third kinetic step solves the vorticity equation using a Galerkin finite element method with boundary conditions determined in the first step and velocities determined in the second step. The accuracy of the numerical algorithm is demonstrated through the driven‐cavity problem and the 2‐D cylinder in a free‐stream problem, which represent both internal and external flows. Each of the three steps requires a unique parallelization effort, which are evaluated in terms of parallel efficiency. Copyright © 2002 John Wiley & Sons, Ltd.