Premium
A new enrichment space for the treatment of discontinuous pressures in multi‐fluid flows
Author(s) -
Ausas Roberto F.,
Buscaglia Gustavo C.,
Idelsohn Sergio R.
Publication year - 2011
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2713
Subject(s) - classification of discontinuities , space (punctuation) , finite element method , mechanics , viscosity , degrees of freedom (physics and chemistry) , pressure gradient , mathematics , physics , mathematical analysis , classical mechanics , computer science , thermodynamics , operating system
SUMMARY In this work, a new enrichment space to accommodate jumps in the pressure field at immersed interfaces in finite element formulations, is proposed. The new enrichment adds two degrees of freedom per element that can be eliminated by means of static condensation. The new space is tested and compared with the classical P 1 space and to the space proposed by Ausas et al (Comp. Meth. Appl. Mech. Eng., Vol. 199, 1019–1031, 2010) in several problems involving jumps in the viscosity and/or the presence of singular forces at interfaces not conforming with the element edges. The combination of this enrichment space with another enrichment that accommodates discontinuities in the pressure gradient has also been explored, exhibiting excellent results in problems involving jumps in the density or the volume forces. Copyright © 2011 John Wiley & Sons, Ltd.