Premium
Suitability of the k – ω turbulence model for scramjet flowfield simulations
Author(s) -
Chan W.Y.K.,
Jacobs P.A.,
Mee D.J.
Publication year - 2011
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2699
Subject(s) - freestream , turbulence , mechanics , k epsilon turbulence model , turbulence modeling , physics , k omega turbulence model , scramjet , computational fluid dynamics , turbulence kinetic energy , classical mechanics , reynolds number , combustor , combustion , chemistry , organic chemistry
SUMMARY The suitability of Wilcox's 2006 k – ω turbulence model for scramjet flowfield simulations is demonstrated by validation against five test cases that have flowfields representative of those to be expected in scramjets. The five test cases include a 2D flat plate, an axisymmetric cylinder, a backward‐facing step, the mixing of a pair of coaxial jets and the interaction between a shock wave and turbulent boundary layer. A generally good agreement between the numerical and experimental results is obtained for all test cases. These tests reveal that despite the turbulence model's sensitivity to freestream turbulence properties, the numerically predicted skin friction agrees with experimental data and theoretical correlations to their degree of uncertainty. The tests also confirm the importance of using a y + value of less than 1 in getting accurate surface heat transfer distributions. In the coaxial jets case, the importance of matching the turbulence intensities at the inflow plane in improving the predictions of the turbulent mixing phenomena is also shown. A review of guidelines with regard to the setting up of grids and specification of freestream turbulence properties for turbulent Reynolds‐averaged Navier–Stokes CFD simulations is also included in this paper. Copyright © 2011 John Wiley & Sons, Ltd.