Premium
Axisymmetric boundary integral formulation for a two‐fluid system
Author(s) -
Garzon M.,
Gray L. J.,
Sethian J. A.
Publication year - 2011
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2633
Subject(s) - rotational symmetry , mathematics , mathematical analysis , boundary (topology) , velocity potential , mechanics , potential flow , boundary value problem , geometry , physics
SUMMARY A 3D axisymmetric Galerkin boundary integral formulation for potential flow is employed to model two fluids of different densities, one fluid enclosed inside the other. The interface variables are the velocity potential and the normal velocity, and they can be solved for separately, the second linear system being symmetric. The algorithm is validated by comparing with the analytic solutions for a static interior spherical drop over a range of values for the relative densities D = ρ E / ρ Iof exterior and interior fluids and various boundary conditions. For time‐dependent simulations utilizing a level set method for the interface tracking, the accuracy has been checked by comparing against the known oscillation frequency of the sphere. Pinch‐off profiles corresponding to an initial two‐lobe geometry drop and D = 6 are also presented. Published in 2011 by John Wiley & Sons, Ltd.