Premium
Time‐related element‐free Taylor–Galerkin method with non‐splitting decoupling process for incompressible steady flow
Author(s) -
Wang Xiaodong,
Ouyang Jie
Publication year - 2011
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2582
Subject(s) - galerkin method , discretization , decoupling (probability) , mathematics , discontinuous galerkin method , finite element method , computation , navier–stokes equations , incompressible flow , mathematical analysis , taylor series , flow (mathematics) , compressibility , geometry , physics , mechanics , algorithm , control engineering , engineering , thermodynamics
SUMMARY The time‐related element‐free Taylor–Galerkin method with non‐splitting decoupling process (EFTG‐NSD) is proposed for the simulation of steady flows. The goal of the present paper is twofold. One is to raise the efficiency of the time‐related methods for solving steady flow problems, and the other is to obtain a good stability. The EFTG‐NSD method, which uses the time‐related Navier–Stokes equations to describe steady flows, does not care about the intermediate process and obtains solution of steady flows through time marching. Different from the classical time‐related fractional step methods, the EFTG‐NSD method decouples the Navier–Stokes equations without any operator‐splitting and correction. Because the elimination of correction at each iteration step reduces the computation cost, the EFTG‐NSD method possesses higher computation efficiency. In addition, the EFTG‐NSD method has a good stability due to the use of the Taylor–Galerkin formula in time and space discretization. Furthermore, the method combining element‐free Galerkin method with Taylor–Galerkin method is an important supplement of the element‐free Galerkin method for solving flow problems. Copyright © 2011 John Wiley & Sons, Ltd.