Premium
An efficient approach for calculation of pitching moment in nonlinear reduced frequency method at low Mach number transonic flows
Author(s) -
Koopaee M. Kharati,
Emdad H.,
Alishahi M. M.
Publication year - 2011
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2506
Subject(s) - transonic , mach number , harmonics , mathematics , nonlinear system , mathematical analysis , frequency domain , moment (physics) , computational fluid dynamics , physics , classical mechanics , mechanics , aerodynamics , quantum mechanics , voltage
In this research, an efficient methodology for calculation of pitching moment coefficient at low Mach number transonic flows by using the perturbed nonlinear reduced frequency approach is presented. The proposed approach uses the perturbation technique in the nonlinear frequency domain (NLFD) method to estimate the solution at high harmonics. In this approach, the density and velocity fields at high harmonics are perturbed about those at low harmonics. Perturbing the density and velocity fields, the semi‐linear form of the governing equations is obtained. The resulting solution vector and spatial operator are then approximated by discrete form of Fourier transformation and governing equations are solved by using the pseudo‐spectral approach. Numerical results show that the proposed approach predicts good pitching moment coefficient at low Mach number transonic flows with up to 50% savings in computational time. Copyright © 2011 John Wiley & Sons, Ltd.