Premium
A high‐precision unstructured adaptive mesh technique for gas–liquid two‐phase flows
Author(s) -
Ito Kei,
Kunugi Tomoaki,
Ohshima Hiroyuki
Publication year - 2010
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2432
Subject(s) - polygon mesh , adaptive mesh refinement , momentum (technical analysis) , computer science , finite volume method , mechanics , computational science , algorithm , physics , computer graphics (images) , finance , economics
Abstract Adaptive mesh techniques are used widely in the numerical simulations of fluid flows, and the simulation results with high accuracies are obtained by appropriate mesh adaptations. However, gas–liquid two‐phase flows are still difficult to be simulated on adaptive meshes, especially on unstructured adaptive meshes, because the physical phenomena near gas–liquid interfaces are highly complicated and in general, not modeled appropriately on adaptive meshes. In this paper, a high‐precision unstructured adaptive mesh technique for gas–liquid two‐phase flows is developed and verified/validated. In the unstructured adaptive mesh technique, the PLIC algorithm is employed to simulate interfacial dynamic behaviors and, therefore, the reconstruction method for the interfaces in refined cells is developed, which satisfies the gas and liquid volume conservations and geometrical conservations of interfaces. In addition, the physics‐based consideration is performed on the momentum calculations near interfaces, and the calculation method with gas and liquid momentum conservations is developed. For verification, the slotted‐disk revolution problem is solved. As a result, the unstructured adaptive mesh technique succeeds in reproducing the slotted‐disk shape accurately and well maintaining the shape after one full‐revolution. The dam‐break problem is also simulated and the momentum conservative calculation method succeeds in providing physically appropriate results, which show good agreements with experimental data. Therefore, it is confirmed that the developed unstructured adaptive mesh technique is very efficient to simulate gas–liquid two‐phase flows accurately. Copyright © 2010 John Wiley & Sons, Ltd.