z-logo
Premium
Numerical models for vehicle exhaust dispersion in complex urban areas
Author(s) -
Liu Weiming
Publication year - 2010
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2396
Subject(s) - turbulence , mechanics , advection , meteorology , computational fluid dynamics , reynolds averaged navier–stokes equations , computer simulation , computation , dispersion (optics) , environmental science , physics , mathematics , thermodynamics , optics , algorithm
Two numerical models are presented for predicting vehicle exhaust dispersion in complex urban areas with or without the wind field. The models not only reflect the effect of building and street canyon configuration on the pollutant propagation, but also are able to predict the turbulent energy produced by moving vehicles on the road. In particular, in the discrete model, turbulent energy and pollutant concentration produced by each vehicle are dynamically described in the Lagrangian method. The pollutant propagation is calculated with the advection–diffusion equation. The Reynolds averaged Navier–Stokes equations are numerically solved for the wind flows. The movement and heat release rate of the vehicles are treated as sources of the turbulent energy equation for the computation of turbulent energy produced by the moving vehicles. This paper reports the detailed implementation of the models. Four typical numerical tests were carried out to represent the performance of the proposed numerical models. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here