Premium
Large‐scale discrete element modeling in a fluidized bed
Author(s) -
Sakai Mikio,
Yamada Yoshinori,
Shigeto Yusuke,
Shibata Kazuya,
Kawasaki Vanessa M.,
Koshizuka Seiichi
Publication year - 2010
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2364
Subject(s) - discrete element method , scale (ratio) , particle (ecology) , mechanics , fluidized bed , scale model , grain size , materials science , simulation , statistical physics , mathematics , engineering , geology , thermodynamics , physics , composite material , aerospace engineering , oceanography , quantum mechanics
The discrete element method (DEM) is widely used in calculating powder systems. The DEM makes it possible to determine the complicated phenomena related to particle flowability. However, DEM has a fatal problem, which is that the number of calculated particles is restricted due to excessive calculation costs. Consequently, we have developed a large‐scale model of the DEM, which is called the coarse grain model. The coarse grain particle represents a group of the original particles. Therefore, a large‐scale DEM simulation can be performed using an extremely small number of the calculated particles. In our previous studies, the coarse grain model was applied in gas–solid and solid–liquid flow systems. It is anticipated that the coarse grain model will be used in various powder systems. In the current study, the coarse grain model has been applied to a two‐dimensional bubbling fluidized bed. The adequacy of the coarse grain model was proved by a comparison with the original particle behavior. The simulation results obtained using the coarse grain model showed good agreement with the results for the original system. Moreover, the calculation speed with the coarse grain model was shown to be much faster than the calculation speed of the original model. Copyright © 2010 John Wiley & Sons, Ltd.