z-logo
Premium
Weak coupling of a Reynolds model and a Stokes model for hydrodynamic lubrication
Author(s) -
Nilsson B.,
Hansbo P.
Publication year - 2011
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2281
Subject(s) - reynolds number , reynolds averaged navier–stokes equations , lubrication , mechanics , computation , reynolds equation , coupling (piping) , polygon mesh , cavitation , computational fluid dynamics , physics , classical mechanics , computer science , mathematics , geometry , mechanical engineering , engineering , turbulence , thermodynamics , algorithm
The Reynolds model is a reduced Stokes model, valid for narrow lubrication regions. In order to be able to handle locally non‐narrow regions such as pits or grooves, often displaying rapid geometrical variations, there is a need to be able to transit to the more accurate Stokes model. A fundamental problem is how to couple the two models in a numerical simulation, preferably allowing for different meshes in the different domains. In this paper, we present a weak coupling method for Reynolds and Stokes models for lubrication computations, including the possibility of cavitation in the different regions. The paper concludes with a numerical example. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom