z-logo
Premium
High‐order finite difference schemes for incompressible flows
Author(s) -
Fadel H.,
Agouzoul M.,
Jimack P. K.
Publication year - 2011
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2228
Subject(s) - compressibility , robustness (evolution) , mathematics , navier–stokes equations , pressure gradient , extension (predicate logic) , boundary value problem , finite difference , finite difference method , mathematical analysis , mathematical optimization , computer science , mechanics , physics , biochemistry , chemistry , gene , programming language
This paper presents a new high‐order approach to the numerical solution of the incompressible Stokes and Navier–Stokes equations. The class of schemes developed is based upon a velocity–pressure–pressure gradient formulation, which allows: (i) high‐order finite difference stencils to be applied on non‐staggered grids; (ii) high‐order pressure gradient approximations to be made using standard Padé schemes, and (iii) a variety of boundary conditions to be incorporated in a natural manner. Results are presented in detail for a selection of two‐dimensional steady‐state test problems, using the fourth‐order scheme to demonstrate the accuracy and the robustness of the proposed methods. Furthermore, extensions to higher orders and time‐dependent problems are illustrated, whereas the extension to three‐dimensional problems is also discussed. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom