z-logo
Premium
Numerical simulation of gaseous fuel injection: A new methodology for multi‐dimensional modelling
Author(s) -
Andreassi Luca,
Facci Andrea Luigi,
Ubertini Stefano
Publication year - 2009
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2165
Subject(s) - combustion , piston (optics) , computational fluid dynamics , jet (fluid) , mechanical engineering , grid , computer science , aerospace engineering , mechanics , engineering , chemistry , physics , geology , organic chemistry , wavefront , optics , geodesy
The use of natural gas (instead of liquid or solid fuels) is nowadays drawing an increasing interest in many applications (gas turbines, boilers, internal combustion engines), because of the greater attention to environmental issues. To facilitate the development of these applications, computer models are being developed to simulate gaseous injection, air entrainment and the ensuing combustion. This paper introduces a new method for modelling the injection process of gaseous fuels that aims to hold down grid requirements in order to allow the simulation also of other phenomena, like combustion or valve and piston motion, in reciprocating internal combustion engines. After a short overview of existing models, the transient jet model and the evaluation of inflow conditions are described in detail. Then a basic study of the grid effects on the jet evolution is presented. The model is updated and validated by comparing numerical results with available experimental data for two different operating conditions: a subsonic and a supersonic under‐expanded case. The model demonstrates to be fast enough to be used in a multi‐dimensional code and accurate enough to follow the real gas jet evolution. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here