z-logo
Premium
The modeling of realistic chemical vapor infiltration/deposition reactors
Author(s) -
Ibrahim John,
Paolucci Samuel
Publication year - 2009
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2155
Subject(s) - chemical vapor infiltration , chemical vapor deposition , mechanics , mach number , chemical reaction , chemical equation , materials science , algebraic number , chemistry , mathematics , physics , mathematical analysis , nanotechnology , composite material , porosity , biochemistry
We describe the low Mach number equations as well as a second‐order numerical integration procedure that are used to solve a realistic chemical vapor infiltration/chemical vapor deposition (CVI/CVD) problem. The simulation accounts for a homogeneous gas chemical reaction mechanism, a heterogeneous surface reaction mechanism, and an evolving pore structure model. The numerical solution of the model ultimately leads to the solution of a large system of stiff differential algebraic equations that are to be integrated over a long time. An operator splitting algorithm is employed to deal with the stiffness associated with chemical reactions, whereas a projection method is employed to overcome the difficulty arising from having to solve a large coupled system for velocity and pressure fields. Results show that the proposed integration procedure is very efficient for modeling long time CVI/CVD densification processes. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom