z-logo
Premium
Finite element and sensitivity analysis of thermally induced flow instabilities
Author(s) -
Giguère JeanSerge,
Ilinca Florin,
Pelletier Dominique
Publication year - 2010
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2125
Subject(s) - sensitivity (control systems) , flow (mathematics) , mechanics , finite element method , dimensionless quantity , viscosity , materials science , newtonian fluid , mathematics , thermodynamics , physics , engineering , electronic engineering , composite material
This paper presents a finite element algorithm for the simulation of thermo‐hydrodynamic instabilities causing manufacturing defects in injection molding of plastic and metal powder. Mold‐filling parameters determine the flow pattern during filling, which in turn influences the quality of the final part. Insufficiently, well‐controlled operating conditions may generate inhomogeneities, empty spaces or unusable parts. An understanding of the flow behavior will enable manufacturers to reduce or even eliminate defects and improve their competitiveness. This work presents a rigorous study using numerical simulation and sensitivity analysis. The problem is modeled by the Navier–Stokes equations, the energy equation and a generalized Newtonian viscosity model. The solution algorithm is applied to a simple flow in a symmetrical gate geometry. This problem exhibits both symmetrical and non‐symmetrical solutions depending on the values taken by flow parameters. Under particular combinations of operating conditions, the flow was stable and symmetric, while some other combinations leading to large thermally induced viscosity gradients produce unstable and asymmetric flow. Based on the numerical results, a stability chart of the flow was established, identifying the boundaries between regions of stable and unstable flow in terms of the Graetz number (ratio of thermal conduction time to the convection time scale) and B , a dimensionless ratio indicating the sensitivity of viscosity to temperature changes. Sensitivities with respect to flow parameters are then computed using the continuous sensitivity equations method. We demonstrate that sensitivities are able to detect the transition between the stable and unstable flow regimes and correctly indicate how parameters should change in order to increase the stability of the flow. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here