Premium
An evolutionary optimization of diffuser shapes based on CFD simulations
Author(s) -
Ghosh S.,
Pratihar D. K.,
Maiti B.,
Das P. K.
Publication year - 2010
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2124
Subject(s) - computational fluid dynamics , diffuser (optics) , software , fluent , turbulence , optimal design , genetic algorithm , inlet , computer science , mechanical engineering , simulation , engineering , mathematical optimization , mechanics , mathematics , aerospace engineering , physics , light source , optics , machine learning , programming language
An efficient and robust algorithm is presented for the optimum design of plane symmetric diffusers handling incompressible turbulent flow. The indigenously developed algorithm uses the CFD software: Fluent for the hydrodynamic analysis and employs a genetic algorithm (GA) for optimization. For a prescribed inlet velocity and outlet pressure, pressure recovery coefficient C * p(the objective function) is estimated computationally for various design options. The CFD software and the GA have been combined in a monolithic platform for a fully automated operation using some special control commands. Based on the developed algorithm, an extensive exercise has been made to optimize the diffuser shape. Different methodologies have been adopted to create a large number of design options. Interestingly, not much difference has been noted in the optimum C * pvalues obtained through different approaches. However, in all the approaches, a better design has been obtained through a proper selection of the number of design variables. Finally, the effect of diffuser length on the optimum shape has also been studied. Copyright © 2009 John Wiley & Sons, Ltd.