z-logo
Premium
A 3D incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm
Author(s) -
Wong K. L.,
Baker A. J.
Publication year - 2001
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.204
Subject(s) - finite element method , vorticity , solver , navier–stokes equations , mathematics , laminar flow , computational fluid dynamics , hexahedron , mathematical analysis , compressibility , geometry , physics , mathematical optimization , mechanics , vortex , thermodynamics
The velocity–vorticity formulation is selected to develop a time‐accurate CFD finite element algorithm for the incompressible Navier–Stokes equations in three dimensions.The finite element implementation uses equal order trilinear finite elements on a non‐staggered hexahedral mesh. A second order vorticity kinematic boundary condition is derived for the no slip wall boundary condition which also enforces the incompressibility constraint. A biconjugate gradient stabilized (BiCGSTAB) sparse iterative solver is utilized to solve the fully coupled system of equations as a Newton algorithm. The solver yields an efficient parallel solution algorithm on distributed‐memory machines, such as the IBM SP2. Three dimensional laminar flow solutions for a square channel, a lid‐driven cavity, and a thermal cavity are established and compared with available benchmark solutions. Copyright © 2002 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom