z-logo
Premium
Simulation of multiple shock–shock interference using implicit anti‐diffusive WENO schemes
Author(s) -
Hsieh TsangJen,
Wang ChingHua,
Yang JawYen
Publication year - 2009
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.2009
Subject(s) - shock (circulatory) , mechanics , hypersonic speed , turbulence , physics , compressibility , classification of discontinuities , reynolds averaged navier–stokes equations , dissipative system , total variation diminishing , mathematics , classical mechanics , mathematical analysis , thermodynamics , medicine
Accurate computations of two‐dimensional turbulent hypersonic shock–shock interactions that arise when single and dual shocks impinge on the bow shock in front of a cylinder are presented. The simulation methods used are a class of lower–upper symmetric‐Gauss–Seidel implicit anti‐diffusive weighted essentially non‐oscillatory (WENO) schemes for solving the compressible Navier–Stokes equations with Spalart–Allmaras one‐equation turbulence model. A numerical flux of WENO scheme with anti‐diffusive flux correction is adopted, which consists of first‐order and high‐order fluxes and allows for a more flexible choice of first‐order dissipative methods. Experimental flow fields of type IV shock–shock interactions with single and dual incident shocks by Wieting are computed. By using the WENO scheme with anti‐diffusive flux corrections, the present solution indicates that good accuracy is maintained and contact discontinuities are sharpened markedly as compared with the original WENO schemes on the same meshes. Computed surface pressure distribution and heat transfer rate are also compared with experimental data and other computational results and good agreement is found. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here