Premium
PML absorbing boundary conditions for the linearized and nonlinear Euler equations in the case of oblique mean flow
Author(s) -
Parrish Sarah A.,
Hu Fang Q.
Publication year - 2008
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1905
Subject(s) - euler equations , mathematics , oblique case , nonlinear system , mathematical analysis , mean flow , vorticity , boundary layer , flow (mathematics) , perfectly matched layer , vortex , boundary value problem , geometry , mechanics , physics , turbulence , philosophy , linguistics , quantum mechanics
For the case of uniform mean flow in an arbitrary direction, perfectly matched layer (PML) absorbing boundary conditions are presented for both the linearized and nonlinear Euler equations. Although linear perfectly matched side layers with an oblique mean flow have been studied in previous works, we propose in the present paper a construction of corner layer equations that are dynamically stable. Stability issues are investigated by examining the dispersion relations of linear waves supported by the corner layer equations. For increased efficiency, a pseudo mean flow is included in the derivation of the PML equations for the nonlinear case. Numerical examples are given to support the validity of the proposed equations. Specifically, the linear PML formulation is tested for the case of acoustic, vorticity, and entropy waves traveling with an oblique mean flow. The nonlinear formulation is tested with an isentropic vortex moving diagonally with a constant velocity. Copyright © 2008 John Wiley & Sons, Ltd.