Premium
A domain decomposition approach to finite volume solutions of the Euler equations on unstructured triangular meshes
Author(s) -
Dolean Victoria,
Lanteri Stéphane
Publication year - 2001
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.184
Subject(s) - domain decomposition methods , euler equations , finite volume method , mathematics , polygon mesh , schwarz alternating method , inviscid flow , mortar methods , backward euler method , finite element method , mathematical analysis , geometry , physics , mechanics , thermodynamics
We report on our recent efforts on the formulation and the evaluation of a domain decomposition algorithm for the parallel solution of two‐dimensional compressible inviscid flows. The starting point is a flow solver for the Euler equations, which is based on a mixed finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi‐discrete equations is obtained using a linearized backward Euler implicit scheme. As a result, each pseudo‐time step requires the solution of a sparse linear system for the flow variables. In this study, a non‐overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. First, we formulate an additive Schwarz algorithm using appropriate matching conditions at the subdomain interfaces. In accordance with the hyperbolic nature of the Euler equations, these transmission conditions are Dirichlet conditions for the characteristic variables corresponding to incoming waves. Then, we introduce interface operators that allow us to express the domain decomposition algorithm as a Richardson‐type iteration on the interface unknowns. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach, the interface unknowns are numerical (normal) fluxes. Copyright © 2001 John Wiley & Sons, Ltd.