Premium
On surface tension modelling using the level set method
Author(s) -
Shepel Sergey V.,
Smith Brian L.
Publication year - 2008
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1804
Subject(s) - surface tension , interface (matter) , level set method , convergence (economics) , tension (geology) , set (abstract data type) , surface (topology) , representation (politics) , computer science , function (biology) , algorithm , mechanics , mathematics , geometry , physics , classical mechanics , maximum bubble pressure method , computer vision , thermodynamics , law , economic growth , segmentation , biology , moment (physics) , evolutionary biology , political science , programming language , politics , economics , image segmentation
The paper describes and compares the performance of two options for numerically representing the surface tension force in combination with the level set interface‐tracking method. In both models, the surface tension is represented as a body force, concentrated near the interface, but the technical implementation is different: the first model is based on a traditional level set approach in which the force is distributed in a band around the interface using a regularized delta function, whereas in the second, the force is partly distributed in a band around the interface and partly localized to the actual computational cells containing the interface. A comparative study, involving analysis of several two‐phase flows with moving interfaces, shows that in general the two surface tension models produce results of similar accuracy. However, in the particular case of merging and pinching‐off of interfaces, the traditional level set model of surface tension produces an error that results in non‐converging solutions for film‐like interfaces (i.e. ones involving large contact areas). In contrast, the second model, based on the localized representation of the surface tension force, displays consistent first‐order convergence. Copyright © 2008 John Wiley & Sons, Ltd.