z-logo
Premium
Blood flow dynamics and fluid–structure interaction in patient‐specific bifurcating cerebral aneurysms
Author(s) -
Valencia Alvaro,
Ledermann Darren,
Rivera Rodrigo,
Bravo Eduardo,
Galvez Marcelo
Publication year - 2008
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1786
Subject(s) - fluid–structure interaction , newtonian fluid , aneurysm , shear stress , mechanics , circle of willis , laminar flow , vortex , hemodynamics , geometry , mathematics , geology , anatomy , medicine , physics , surgery , cardiology , thermodynamics , finite element method
Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The current work describes the blood flow dynamics and fluid–structure interaction in seven patient‐specific models of bifurcating cerebral aneurysms located in the anterior and posterior circulation regions of the circle of Willis. The models were obtained from 3D rotational angiography image data, and blood flow dynamics and fluid–structure interaction were studied under physiologically representative waveform of inflow. The arterial wall was assumed to be elastic, isotropic and homogeneous. The flow was assumed to be laminar, non‐Newtonian and incompressible. In one case, the effects of different model suppositions and boundary conditions were reported in detail. The fully coupled fluid and structure models were solved with the finite elements package ADINA. The vortex structure, pressure, wall shear stress (WSS), effective stress and displacement of the aneurysm wall showed large variations, depending on the morphology of the artery, aneurysm size and position. The time‐averaged WSS, effective stress and displacement at the aneurysm fundus vary between 0.17 and 4.86 Pa, 4.35 and 170.2 kPa and 0.16 and 0.74 mm, respectively, for the seven patient‐specific models of bifurcating cerebral aneurysms. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here