z-logo
Premium
Collocated discrete least‐squares (CDLS) meshless method: error estimate and adaptive refinement
Author(s) -
Afshar M. H.,
Lashckarbolok M.
Publication year - 2008
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1735
Subject(s) - mathematics , least squares function approximation , algorithm , computer science , statistics , estimator
Int. J. Numer. Meth. Fluids (in press) Published online in Wiley InterScience ( www.interscience.wiley.com ) (DOI: 10.1002/fld.1571 ) The authors apologizes the respected readers of the Int. J. Numer. Meth. Fluids for the unnoticed error in the formula ( 35) in Page 7 of the paper. The correct formula is 35\documentclass{article}\footskip=0pc\pagestyle{empty}\begin{document} $$F_l=\left(\sum\limits_{i=1}^{M_{d}}[L(N_l)]_i^{\rm{T}} {\mathbf{f}}_i+\alpha\sum\limits_{i=1}^{M_{t}}[B(N_l)]_i^{\rm{T}} {\mathbf{g}}_{i}+\beta\sum\limits_{i=1}^{M_{u}}[(N_l)]_i^{\rm{T}}\bar{u}_{i}\right),\quad l=1,\ldots,n$$ \end{document}

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom