Premium
Continuous and discrete adjoint approaches for aerodynamic shape optimization with low Mach number preconditioning
Author(s) -
Asouti V. G.,
Zymaris A. S.,
Papadimitriou D. I.,
Giannakoglou K. C.
Publication year - 2007
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1667
Subject(s) - mach number , inviscid flow , aerodynamics , navier–stokes equations , mathematics , adjoint equation , computational fluid dynamics , flow (mathematics) , turbomachinery , incompressible flow , compressibility , mathematical optimization , partial differential equation , mathematical analysis , mechanics , physics , geometry
Discrete and continuous adjoint approaches for use in aerodynamic shape optimization problems at all flow speeds are developed and assessed. They are based on the Navier–Stokes equations with low Mach number preconditioning. By alleviating the large disparity between acoustic waves and fluid speeds, the preconditioned flow and adjoint equations are numerically solved with affordable CPU cost, even at the so‐called incompressible flow conditions. Either by employing the adjoint to the preconditioned flow equations or by preconditioning the adjoint to the ‘standard’ flow equations (under certain conditions the two formulations become equivalent, as proved in this paper), efficient optimization methods with reasonable cost per optimization cycle, even at very low Mach numbers, are derived. During the mathematical development, a couple of assumptions are made which are proved to be harmless to the accuracy in the computed gradients and the effectiveness of the optimization method. The proposed approaches are validated in inviscid and viscous flows in external aerodynamics and turbomachinery flows at various Mach numbers. Copyright © 2007 John Wiley & Sons, Ltd.