z-logo
Premium
Numerical simulations of droplet formation in a cross‐junction microchannel by the lattice Boltzmann method
Author(s) -
Wu Long,
Tsutahara Michihisa,
Kim LaeSung,
Ha ManYeong
Publication year - 2007
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1659
Subject(s) - lattice boltzmann methods , microchannel , mechanics , capillary number , surface tension , capillary action , dimensionless quantity , multiphase flow , bubble , materials science , physics , thermodynamics
Abstract An immiscible liquid–liquid multiphase flow in a cross‐junction microchannel was numerically studied using the lattice Boltzmann method. An improved, immiscible lattice BGK model was proposed by introducing surface tension force based on the continuum surface force (CSF) method. Recoloring step was replaced by the anti‐diffusion scheme in the mixed region to reduce the side‐effect and control the thickness of the interface. The present method was tested by the simulation of a static bubble. Laplace's law and spurious velocities were examined. The results show that our model is more advantageous for simulations of immiscible fluids than the existing immiscible lattice BGK models. Computational results of multiphase flow in a cross‐junction microchannel were obtained and analyzed based on dimensionless numbers. It is found that the flow pattern is decided mostly by the capillary number at a small inlet flux. However, at the same capillary number, a large inlet flux will lead to much smaller droplet generation. For this case, the flow is determined by both the capillary number and the Weber number. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here