z-logo
Premium
Numerical solutions of Euler equations by using a new flux vector splitting scheme
Author(s) -
Zha GC.,
Bilgen E.
Publication year - 1993
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1650170203
Subject(s) - mathematics , euler equations , transonic , mach number , upwind scheme , momentum (technical analysis) , mathematical analysis , roe solver , finite volume method , riemann problem , mechanics , aerodynamics , physics , discretization , finance , economics , riemann hypothesis
A new flux vector splitting scheme has been suggested in this paper. This scheme uses the velocity component normal to the volume interface as the characteristic speed and yields the vanishing individual mass flux at the stagnation. The numerical dissipation for the mass and momentum equations also vanishes with the Mach number approaching zero. One of the diffusive terms of the energy equation does not vanish. But the low numerical diffusion for viscous flows may be ensured by using higher‐order differencing. The scheme is very simple and easy to be implemented. The scheme has been applied to solve the one dimensional (1D) and multidimensional Euler equations. The solutions are monotone and the normal shock wave profiles are crisp. For a 1D shock tube problem with the shock and the contact discontinuities, the present scheme and Roe scheme give very similar results, which are the best compared with those from Van Leer scheme and Liou–Steffen's advection upstream splitting method (AUSM) scheme. For the multidimensional transonic flows, the sharp monotone normal shock wave profiles with mostly one transition zone are obtained. The results are compared with those from Van Leer scheme, AUSM and also with the experiment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here