Premium
Finite element solutions of axisymmetric Euler equations for an incompressible and inviscid fluid
Author(s) -
Saiac JacquesHerve
Publication year - 1990
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1650100203
Subject(s) - inviscid flow , euler equations , stream function , finite element method , vorticity , rotational symmetry , mathematics , euler's formula , classical mechanics , mechanics , vortex , physics , mathematical analysis , thermodynamics
In this paper we present a finite element method for the numerical solution of axisymmetric flows. The governing equations of the flow are the axisymmetric Euler equations. We use a streamfunction angular velocity and vorticity formulation of these equations, and we consider the non‐stationary and the stationary problems. For industrial applications we have developed a general model which computes the flow past an annular aerofoil and a duct propeller. It is able to take into account jumps of angular velocity and vorticiy in order to model the flow in the presence of a propeller. Moreover, we compute the complete flow around the after‐body of a ship and the interaction between a ducted propeller and the stern. In the stationary case we have developed a simple and efficient version of the characteristics/finite element method. Numerical tests have shown that this last method leads to a very fast solver for the Euler equations. The numerical results are in good agreement with experimental data.