z-logo
Premium
Dirichlet and Neumann boundary conditions for the pressure poisson equation of incompressible flow
Author(s) -
Abdallah S.,
Dreyer J.
Publication year - 1988
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1650080905
Subject(s) - neumann boundary condition , mathematics , mixed boundary condition , boundary value problem , dirichlet boundary condition , robin boundary condition , mathematical analysis , poisson's equation , dirichlet's principle
Abstract In a recent paper Gresho and Sani showed that Dirichlet and Neumann boundary conditions for the pressure Poisson equation give the same solution. The purpose of this paper is to confirm this (for one case at least) by numerically solving the pressure equation with Dirichlet and Neumann boundary conditions for the inviscid stagnation point flow problem. The Dirichlet boundary condition is obtained by integrating the tangential component of the momentum equation along the boundary. The Neumann boundary condition is obtained by applying the normal component of the momentum equation at the boundary. In this work solutions for the Neumann problem exist only if a compatibility condition is satisfied. A consistent finite difference procedure which satisfies this condition on non‐staggered grids is used for the solution of the pressure equation with Neumann conditions. Two test cases are computed. In the first case the velocity field is given from the analytical solution and the pressure is recovered from the solution of the associated Poisson equation. The computed results are identical for both Dirichlet and Neumann boundary conditions. However, the Dirichlet problem converges faster than the Neumann case. In the second test case the velocity field is computed from the momentum equations, which are solved iteratively with the pressure Poisson equation. In this case the Neumann problem converges faster than the Dirichlet problem.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here