Premium
Development and validation of a SUPG finite element scheme for the compressible Navier–Stokes equations using a modified inviscid flux discretization
Author(s) -
Kirk Benjamin S.,
Carey Graham F.
Publication year - 2007
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1635
Subject(s) - inviscid flow , discretization , finite element method , temporal discretization , navier–stokes equations , mathematics , laminar flow , compressibility , compressible flow , mechanics , mathematical analysis , physics , thermodynamics
This paper considers the streamline‐upwind Petrov–Galerkin (SUPG) method applied to the unsteady compressible Navier–Stokes equations in conservation‐variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, and the second‐order accurate time discretization are presented. The numerical method is discussed in detail. The performance of the algorithm is then investigated by considering inviscid flow past a circular cylinder. Validation of the finite element formulation via comparisons with experimental data for high‐Mach number perfect gas laminar flows is presented, with a specific focus on comparisons with experimentally measured skin friction and convective heat transfer on a 15° compression ramp. Copyright © 2007 John Wiley & Sons, Ltd.