Premium
A hybrid vortex method for the simulation of three‐dimensional flows
Author(s) -
Li Wei,
Vezza Marco
Publication year - 2007
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1610
Subject(s) - vorticity , discretization , vortex , vorticity equation , mathematics , fast multipole method , hexahedron , mathematical analysis , classical mechanics , multipole expansion , physics , mechanics , finite element method , quantum mechanics , thermodynamics
This paper presents an integral vorticity method for solving three‐dimensional Navier–Stokes equations. A finite volume scheme is implemented to solve the vorticity transport equation, which is discretized on a structured hexahedral mesh. A vortex sheet algorithm is used to enforce the no‐slip boundary condition through a vorticity flux at the boundary. The Biot–Savart integral is evaluated to compute the velocity field, in conjunction with a fast algorithm based on multipole expansion. This method is applied to the simulation of uniform flow past a sphere. Copyright © 2007 John Wiley & Sons, Ltd.