Premium
Numerical simulation of the flow field in the vicinity of an axial flow fan
Author(s) -
Meyer C.J.,
Kröger D.G.
Publication year - 2001
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.161
Subject(s) - mechanics , computational fluid dynamics , mechanical fan , axial compressor , flow (mathematics) , fan in , computer simulation , momentum (technical analysis) , physics , engineering , mechanical engineering , finance , economics , gas compressor
The main purpose of the current investigation is the development and evaluation of a numerical model used to simulate the effect of an axial flow fan on the velocity field in the vicinity of the fan blades. The axial flow fan is modeled as an actuator disc, where the actuator disc forces are calculated using blade element theory. The calculated disc forces are expressed as sources/sinks of momentum in the Navier–Stokes equations solved by a commercially available computational fluid dynamic (CFD) code, Flo ++ . The model is used to determine the fan performance characteristics of an axial flow fan as well as the velocity fields directly up‐ and downstream of the fan blades. The results are compared with experimental data. In general, good agreement is obtained between the numerical results and experimental data, although the fan power consumption, as well as radial velocity downstream of the fan blades, is underpredicted by the fan model. Copyright © 2001 John Wiley & Sons, Ltd.