Premium
Self‐propulsion of oscillating wings in incompressible flow
Author(s) -
Carabineanu A.
Publication year - 2007
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1513
Subject(s) - airfoil , thrust , discretization , quadrature (astronomy) , drag coefficient , jump , mathematics , wing , compressibility , drag , lift coefficient , incompressible flow , mechanics , classical mechanics , physics , mathematical analysis , reynolds number , turbulence , quantum mechanics , optics , thermodynamics
In this paper, we show that the oscillatory motion of an airfoil (wing) in an ideal fluid can determine the apparition of thrust. In the framework of the linearized perturbation theory, the pressure jump over the oscillating wing is the solution of a two‐dimensional hypersingular integral equation. Using appropriate quadrature formulas, we discretize the oscillatory lifting surface integral equation in order to obtain the jump of the pressure across the surface. Integrating numerically, we obtain the drag coefficient. For some oscillatory motions, if the frequency of the oscillations surpasses a certain value, the drag coefficient becomes negative, i.e. there appears a propulsive force. Copyright © 2007 John Wiley & Sons, Ltd.