Premium
Instabilities during batch sedimentation in geometries containing obstacles: A numerical and experimental study
Author(s) -
Rao Rekha R.,
Mondy Lisa A.,
Altobelli Stephen A.
Publication year - 2007
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1483
Subject(s) - mechanics , physics , sedimentation , classical mechanics , particle (ecology) , newtonian fluid , geometry , geology , mathematics , paleontology , oceanography , sediment
Batch sedimentation of non‐colloidal particle suspensions is studied with nuclear magnetic resonance flow visualization and continuum‐level numerical modelling of particle migration. The experimental method gives particle volume fraction as a function of time and position, which then provides validation data for the numerical model. A finite element method is used to discretize the equations of motion, including an evolution equation for the particle volume fraction and a generalized Newtonian viscosity dependent on local particle concentration. The diffusive‐flux equation is based on the Phillips model ( Phys. Fluids A 1992; 4 :30–40) and includes sedimentation terms described by Zhang and Acrivos ( Int. J. Multiphase Flow 1994; 20 :579–591). The model and experiments are utilized in three distinct geometries with particles that are heavier and lighter than the suspending fluid, depending on the experiment: (1) sedimentation in a cylinder with a contraction; (2) particle flotation in a horizontal cylinder with a horizontal rod; and (3) flotation around a rectangular inclusion. Secondary flows appear in both the experiments and the simulations when a region of higher density fluid is above a lower density fluid. The secondary flows result in particle inhomogeneities, Rayleigh–Taylor‐like instabilities, and remixing, though the effect in the simulations is more pronounced than in the experiments. Published in 2007 by John Wiley & Sons, Ltd.