z-logo
Premium
Temporal accuracy analysis of phase change convection simulations using the JFNK‐SIMPLE algorithm
Author(s) -
Evans Katherine J.,
Knoll Dana A.
Publication year - 2007
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1478
Subject(s) - discretization , temporal discretization , mathematics , jacobian matrix and determinant , algorithm , mathematical analysis
The incompressible Navier–Stokes and energy conservation equations with phase change effects are applied to two benchmark problems: (1) non‐dimensional freezing with convection; and (2) pure gallium melting. Using a Jacobian‐free Newton–Krylov (JFNK) fully implicit solution method preconditioned with the SIMPLE ( Numerical Heat Transfer and Fluid Flow . Hemisphere: New York, 1980) algorithm using centred discretization in space and three‐level discretization in time converges with second‐order accuracy for these problems. In the case of non‐dimensional freezing, the temporal accuracy is sensitive to the choice of velocity attenuation parameter. By comparing to solutions with first‐order backward Euler discretization in time, it is shown that the second‐order accuracy in time is required to resolve the fine‐scale convection structure during early gallium melting. Qualitative discrepancies develop over time for both the first‐order temporal discretized simulation using the JFNK‐SIMPLE algorithm that converges the nonlinearities and a SIMPLE‐based algorithm that converges to a more common mass balance condition. The discrepancies in the JFNK‐SIMPLE simulations using only first‐order rather than second‐order accurate temporal discretization for a given time step size appear to be offset in time. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here