z-logo
Premium
Computation of turbulent flows using a finite calculus–finite element formulation
Author(s) -
Oñate E.,
Valls A.,
García J.
Publication year - 2007
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1476
Subject(s) - turbulence , finite element method , reynolds number , compressibility , calculus (dental) , incompressible flow , reynolds stress , computation , computational fluid dynamics , mathematics , pressure correction method , flow (mathematics) , mechanics , computer science , geometry , physics , algorithm , medicine , dentistry , thermodynamics
We present a formulation for analysis of turbulent incompressible flows using a stabilized finite element method (FEM) based on the finite calculus (FIC) procedure. The stabilization terms introduced by the FIC approach allow to solve a wide range of fluid flow problems at different Reynolds numbers, including turbulent flows, without the need of a turbulence model. Examples of application of the FIC/FEM formulation to the analysis of 2D and 3D incompressible flows at large Reynolds numbers exhibiting turbulence features are presented. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom