Premium
Simulation of non‐linear free surface motions in a cylindrical domain using a Chebyshev–Fourier spectral collocation method
Author(s) -
Chern M. J.,
Borthwick A. G. L.,
Eatock Taylor R.
Publication year - 2001
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.146
Subject(s) - free surface , spectral method , discretization , mathematical analysis , cylinder , mathematics , inviscid flow , fourier transform , cylindrical coordinate system , geometry , spectral element method , physics , classical mechanics , mechanics , finite element method , extended finite element method , thermodynamics
When a liquid is perturbed, its free surface may experience highly non‐linear motions in response. This paper presents a numerical model of the three‐dimensional hydrodynamics of an inviscid liquid with a free surface. The mathematical model is based on potential theory in cylindrical co‐ordinates with a σ‐transformation applied between the bed and free surface in the vertical direction. Chebyshev spectral elements discretize space in the vertical and radial directions; Fourier spectral elements are used in the angular direction. Higher derivatives are approximated using a collocation (or pseudo‐spectral) matrix method. The numerical scheme is validated for non‐linear transient sloshing waves in a cylindrical tank containing a circular surface‐piercing cylinder at its centre. Excellent agreement is obtained with Ma and Wu's [Second order transient waves around a vertical cylinder in a tank. Journal of Hydrodynamics 1995; Ser. B4 : 72–81] second‐order potential theory. Further evidence for the capability of the scheme to predict complicated three‐dimensional, and highly non‐linear, free surface motions is given by the evolution of an impulse wave in a cylindrical tank and in an open domain. Copyright © 2001 John Wiley & Sons, Ltd.