Premium
Volumetric methods for evaluating energy loss and heat transfer in cavity flows
Author(s) -
Norris Stuart,
Mallinson Gordon
Publication year - 2007
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1425
Subject(s) - entropy production , mechanics , heat transfer , nusselt number , dissipation , entropy (arrow of time) , thermodynamics , natural convection , physics , reynolds number , turbulence
Methods have been developed for calculating irreversible energy losses and rates of heat transfer from computational fluid dynamics solutions using volume integrations of energy dissipation or entropy production functions. These methods contrast with the more usual approach of performing first law energy balances over the boundaries of a flow domain. Advantages of the volumetric approach are that the estimates involve the whole flow domain and are hence based on more information than would otherwise be used, and that the energy dissipation or entropy production functions allow for detailed assessment of the mechanisms and regions of energy loss or entropy production. Volume integrations are applied to the calculation of viscous losses in a lid‐driven cavity flow, and to the viscous losses and heat transfer due to natural convection in a side‐heated cavity. In the convection problem comparison with the entropy increase across a stationary heat conducting layer leads to a novel volume integral expression for the Nusselt number. The predictions using this method compare well with traditional surface integrals and benchmark results. Copyright © 2007 John Wiley & Sons, Ltd.