Premium
Hybrid lattice Boltzmann finite‐difference simulation of axisymmetric swirling and rotating flows
Author(s) -
Huang Haibo,
Lee T. S.,
Shu C.
Publication year - 2006
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1380
Subject(s) - lattice boltzmann methods , rotational symmetry , mechanics , reynolds number , axial symmetry , physics , taylor number , compressibility , grashof number , flow (mathematics) , mathematics , statistical physics , turbulence , geometry , nusselt number
The axisymmetric flows with swirl or rotation were solved by a hybrid scheme with lattice Boltzmann method for the axial and radial velocities and finite‐difference method for the azimuthal (or swirl) velocity and the temperature. An incompressible axisymmetric lattice Boltzmann D2Q9 model was proposed to solve the axial and radial velocities through inserting source terms into the two‐dimensional lattice Boltzmann equation. Present hybrid scheme was firstly validated by simulations of Taylor–Couette flows between two concentric cylinders. Then the benchmark problems of melt flow in Czochralski crystal growth were studied and accurate results were obtained. Numerical experiment demonstrated that present axisymmetric D2Q9 model is more stable than the previous axisymmetric D2Q9 model ( J. Comp. Phys. 2003; 186 (1):295–307). Hence, compared with the previous model, present numerical method provides a significant advantage in simulation melt flow cases with high Reynolds number and high Grashof number. Copyright © 2006 John Wiley & Sons, Ltd.