Premium
Comparison of haemodynamics in cerebral aneurysms of different sizes located in the ophthalmic artery
Author(s) -
Valencia Alvaro,
Botto Sergio,
Sordo Juan,
Galvez Marcelo,
Badilla Lautaro
Publication year - 2006
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1308
Subject(s) - pulsatile flow , shear stress , aneurysm , hemodynamics , laminar flow , ophthalmic artery , vortex , rotational angiography , flow (mathematics) , blood flow , medicine , mechanics , anatomy , geology , angiography , cardiology , physics , radiology
Haemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations of the wall shear stress in the aneurysmal sac are hypothesized to be correlated with its growth and rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This work describes the flow dynamics in patient‐specific models of saccular aneurysms of different sizes located in the ophthalmic artery. The models were obtained from three‐dimensional rotational angiography image data and blood flow dynamics was studied under physiologically representative waveform of inflow. The three‐dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using nonstructured fine grid sizes. The intra‐aneurysmal flows show complex vortex structures that change during one pulsatile cycle. A relation between the aneurysm aspect ratio and the mean wall shear stress on the aneurysmal sac is showed. Copyright © 2006 John Wiley & Sons, Ltd.