Premium
Adaptive Euler simulations of airfoil–vortex interaction
Author(s) -
Tang Lei,
Baeder James D.
Publication year - 2006
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1306
Subject(s) - airfoil , vortex , vorticity , euler's formula , euler equations , starting vortex , numerical diffusion , mechanics , grid , physics , computational fluid dynamics , classical mechanics , mathematics , geometry , mathematical analysis , vortex ring
A grid redistribution method is used together with an improved spatially third‐order accurate Euler solver to improve the accuracy of direct Euler simulations of airfoil–vortex interaction. The presented numerical results of two airfoil–vortex interaction cases indicate that with combination of the two methods, the numerical diffusion of vorticity inherent in the direct Euler simulations is drastically reduced without increasing the number of grid points. With some extra works due to grid redistribution, the predicted vortex structure is well preserved after a long convection and much sharper acoustic wave front resulting from airfoil–vortex interaction is captured. Copyright © 2006 John Wiley & Sons, Ltd.