z-logo
Premium
Multigrid third‐order least‐squares solution of Cauchy–Riemann equations on unstructured triangular grids
Author(s) -
Nishikawa H.
Publication year - 2006
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1287
Subject(s) - overdetermined system , multigrid method , mathematics , riemann solver , discretization , finite volume method , solver , norm (philosophy) , residual , unstructured grid , triangle mesh , vertex (graph theory) , cauchy distribution , mathematical optimization , mathematical analysis , grid , partial differential equation , geometry , algorithm , graph , discrete mathematics , physics , political science , mechanics , law , polygon mesh
In this paper, a multigrid algorithm is developed for the third‐order accurate solution of Cauchy–Riemann equations discretized in the cell‐vertex finite‐volume fashion: the solution values stored at vertices and the residuals defined on triangular elements. On triangular grids, this results in a highly overdetermined problem, and therefore we consider its solution that minimizes the residuals in the least‐squares norm. The standard second‐order least‐squares scheme is extended to third‐order by adding a high‐order correction term in the residual. The resulting high‐order method is shown to give sufficiently accurate solutions on relatively coarse grids. Combined with a multigrid technique, the method then becomes a highly accurate and efficient solver. We present some results to demonstrate its accuracy and efficiency, including both structured and unstructured triangular grids. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom