z-logo
Premium
Simulation of shallow flows over variable topographies using unstructured grids
Author(s) -
Mohammadian A.,
Le Roux D. Y.
Publication year - 2006
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1167
Subject(s) - discretization , computation , upwind scheme , shallow water equations , computer science , unstructured grid , mathematics , mathematical optimization , variable (mathematics) , mesh generation , grid , algorithm , geometry , finite element method , mathematical analysis , engineering , structural engineering
Simulation of shallow flows over variable topographies is a challenging case for most available shock‐capturing schemes. This problem arises because the source terms and flux gradients are not balanced in the numerical computations. Treatments for this problem generally work well on structured grids, but they are usually too expensive, and most of them are not directly applicable to unstructured grids. In this paper we propose two efficient methods to treat the source terms without upwinding and to satisfy the compatibility condition on unstructured grids. In the first method, the calculation of the bed slope source term is performed by employing a compatible approximation of water depth at the cell interfaces. In the second one, different components of the bed slope term are considered separately and a compatible discretization of the components is proposed. The present treatments are applicable for most schemes including the Roe's method without changing the performance of the original scheme for smooth topographies. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here