z-logo
Premium
A simulation of free surface waves for incompressible two‐phase flows using a curvilinear level set formulation
Author(s) -
Price W. G.,
Chen Y. G.
Publication year - 2006
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1126
Subject(s) - curvilinear coordinates , slosh dynamics , free surface , reynolds averaged navier–stokes equations , computational fluid dynamics , mechanics , mathematics , level set method , reynolds number , compressibility , flow (mathematics) , coordinate system , breaking wave , volume of fluid method , geometry , mathematical analysis , physics , computer science , wave propagation , segmentation , artificial intelligence , image segmentation , quantum mechanics , turbulence
A level set formulation in a generalized curvilinear coordinate is developed to simulate the free surface waves generated by moving bodies or the sloshing of fluid in a container. The Reynolds‐averaged Navier–Stokes (RANS) equations are modified to account for variable density and viscosity in two‐phase (i.e. water–air) fluid flow systems. A local level set method is used to update the level set function and a least square technique adopted to re‐initialize it at each time step. To assess the developed algorithm and its versatility, a selection of different fluid–structure interaction problems are examined, i.e. an oscillating flow in a two‐dimensional square tank, a breaking dam involving different density fluids, sloshing in a two‐dimensional rectangular tank and a Wigley ship hull travelling in calm water. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom