Premium
Turbulence modelling of problem aerospace flows
Author(s) -
Tucker Paul G.
Publication year - 2006
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1120
Subject(s) - airfoil , reynolds averaged navier–stokes equations , detached eddy simulation , turbulence , computational fluid dynamics , turbulence modeling , naca airfoil , delta wing , reynolds stress , mathematics , geometry , mechanics , aerospace engineering , aerodynamics , physics , engineering , reynolds number
Unsteady Reynolds averaged Navier–Stokes (URANS) and detached eddy simulation (DES) related approaches are considered for high angle of attack NACA0012 airfoil, wing–flap, generic tilt‐rotor airfoil and double‐delta geometry flows. These are all found to be problem flows for URANS models. For DES fifth‐order upwinding is found too dissipative and the use of, for high speed flows, instability prone centred differencing essential. An existing hybrid ILES–RANS modelling approach, intended for flexible geometry, relatively high numerical dissipation codes is tested along with differential wall distance algorithms. The former gives promising results. The standard turbulence modelling approaches are found to give perhaps a surprising results variation. Results suggest that for the problem flows, the explicit algebraic stress and Menter shear stress transport (SST) URANS models are more accurate than the economical Spalart–Allmaras (SA). However, the explicit algebraic stress model (EASM) in its k –ε form is impractically expensive to converge. Here, SA predictions lack a rotation correction term and this is likely to improve these results. Copyright © 2005 John Wiley & Sons, Ltd.