Premium
Comparisons of CIP, compact and CIP‐CSL2 schemes for reproducing internal solitary waves
Author(s) -
Nakayama K.
Publication year - 2005
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1112
Subject(s) - internal wave , momentum (technical analysis) , korteweg–de vries equation , computation , mathematics , mathematical analysis , interpolation (computer graphics) , poisson's equation , amplitude , stratified flow , physics , classical mechanics , nonlinear system , mechanics , algorithm , optics , motion (physics) , turbulence , finance , quantum mechanics , economics
Abstract Six different models were evaluated for reproducing internal solitary waves which occur and propagate in a stratified flow field with a sharp interface. Three stages were used to compute internal solitary waves in a stratified field: (1) first‐phase computation of momentum equations, (2) second‐phase computation of momentum equations, which corresponds to computing the Poisson's equation, and (3) density computation. The six models discussed in this paper consisted of combinations of four different schemes, a three‐point combined compact difference scheme (CCD), a normal central difference scheme (CDS), a cubic‐polynomial interpolation (CIP), and an exactly conservative semi‐Lagrangian scheme (CIP‐CSL2). The residual cutting method was used to solve the Poisson's equation. Three tests were used to confirm the validity of the computations using KdV theory; i.e. the incremental wave speed and amplitude of internal solitary waves, the maximum horizontal velocity and amplitude, and the wave form. In terms of the shape of an internal solitary wave, using CIP for momentum equations was found to provide better performance than CCD. These results suggest one of the most appropriate scheme for reproducing internal solitary waves may be one in which CIP is used for momentum equations and CCD to solve the Poisson's equation. Copyright © 2005 John Wiley & Sons, Ltd.