z-logo
Premium
Swelling effect on the dynamic behaviour of composite cylindrical shells conveying fluid
Author(s) -
Toorani M. H.,
Lakis A. A.
Publication year - 2005
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1058
Subject(s) - isotropy , mechanics , shell (structure) , eigenvalues and eigenvectors , finite element method , vibration , fluid dynamics , fluid–structure interaction , rotational symmetry , fictitious force , classical mechanics , physics , materials science , composite material , thermodynamics , quantum mechanics
This paper presents a semi‐analytical investigation of a fluid–structure system. Both isotropic and composite cylindrical shells filled with or subjected to a flowing fluid have been considered in this study. The structure may be uniform or non‐uniform in the circumferential direction. The hybrid finite element approach, shearable shell theory and velocity potential flow theory have been combined to establish the dynamic equations of the coupled system. The set of matrices describing their relative contributions to equilibrium is determined by exact analytical integration of the equilibrium equations. The linear potential flow theory is applied to describe the fluid effects that lead to the inertial, centrifugal and Coriolis forces. The axisymmetric, beam‐like and shell modes of vibrations in both cases of uniform and non‐uniform cylindrical shells are investigated. Fluid elastic stability of a structure subjected to a flowing fluid is also studied. This theory yields the high and the low eigenvalues and eigenmodes with comparably high accuracy. Reasonable agreement is found with other theories and experiments. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here