z-logo
Premium
A 3‐D non‐hydrostatic pressure model for small amplitude free surface flows
Author(s) -
Lee J. W.,
Teubner M. D.,
Nixon J. B.,
Gill P. M.
Publication year - 2005
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1054
Subject(s) - jacobian matrix and determinant , generalized minimal residual method , hydrostatic equilibrium , mathematics , mathematical analysis , mechanics , physics , linear system , quantum mechanics
A three‐dimensional, non‐hydrostatic pressure, numerical model with k – ε equations for small amplitude free surface flows is presented. By decomposing the pressure into hydrostatic and non‐hydrostatic parts, the numerical model uses an integrated time step with two fractional steps. In the first fractional step the momentum equations are solved without the non‐hydrostatic pressure term, using Newton's method in conjunction with the generalized minimal residual (GMRES) method so that most terms can be solved implicitly. This method only needs the product of a Jacobian matrix and a vector rather than the Jacobian matrix itself, limiting the amount of storage and significantly decreasing the overall computational time required. In the second step the pressure–Poisson equation is solved iteratively with a preconditioned linear GMRES method. It is shown that preconditioning reduces the central processing unit (CPU) time dramatically. In order to prevent pressure oscillations which may arise in collocated grid arrangements, transformed velocities are defined at cell faces by interpolating velocities at grid nodes. After the new pressure field is obtained, the intermediate velocities, which are calculated from the previous fractional step, are updated. The newly developed model is verified against analytical solutions, published results, and experimental data, with excellent agreement. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here