z-logo
Premium
Unstructured lattice Boltzmann method in three dimensions
Author(s) -
Rossi N.,
Ubertini S.,
Bella G.,
Succi S.
Publication year - 2005
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.1018
Subject(s) - lattice boltzmann methods , unstructured grid , hpp model , computational fluid dynamics , mesh generation , reynolds number , boltzmann equation , lattice gas automaton , statistical physics , partial differential equation , finite volume method , mathematics , computer science , physics , mechanics , mathematical analysis , finite element method , algorithm , stochastic cellular automaton , cellular automaton , quantum mechanics , turbulence , thermodynamics
Over the last decade, the lattice Boltzmann method (LBM) has evolved into a valuable alternative to continuum computational fluid dynamics (CFD) methods for the numerical simulation of several complex fluid‐dynamic problems. Recent advances in lattice Boltzmann research have considerably extended the capability of LBM to handle complex geometries. Among these, a particularly remarkable option is represented by cell‐vertex finite‐volume formulations which permit LBM to operate on fully unstructured grids. The two‐dimensional implementation of unstructured LBM, based on the use of triangular elements, has shown capability of tolerating significant grid distortions without suffering any appreciable numerical viscosity effects, to second‐order in the mesh size. In this work, we present the first three‐dimensional generalization of the unstructured lattice Boltzmann technique (ULBE as unstructured lattice Boltzmann equation), in which geometrical flexibility is achieved by coarse‐graining the lattice Boltzmann equation in differential form, using tetrahedrical grids. This 3D extension is demonstrated for the case of 3D pipe flow and moderate Reynolds numbers flow past a sphere. The results provide evidence that the ULBE has significant potential for the accurate calculation of flows in complex 3D geometries. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here