Premium
Effect of shielding rates on upward flame spread over extruded polystyrene foam in vertical channel and heat transfer mechanism
Author(s) -
An Weiguang,
Peng Lujun,
Yin Xiangwei,
Cai Minglun
Publication year - 2020
Publication title -
fire and materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 58
eISSN - 1099-1018
pISSN - 0308-0501
DOI - 10.1002/fam.2917
Subject(s) - flame spread , materials science , heat transfer , composite material , electromagnetic shielding , polystyrene , work (physics) , forensic engineering , mechanics , combustion , chemistry , engineering , mechanical engineering , polymer , physics , organic chemistry
SUMMARY Fire hazard of extruded polystyrene (XPS) thermal insulation materials has aroused public concern. In order to develop flame spread theory and the guideline for fire risk assessment of XPS, an experimental study on upward flame spread behavior and heat transfer mechanism of XPS in a vertical channel with different frontal shielding rates was conducted. Maximum temperature at the place 2 cm from XPS surface and at the center of channel first increase and then decrease as the shielding rate rises. The former is higher than the latter. Experimental value of average flame height rises as the shielding rate increases. A model for predicting the flame height is built, and the predicted results are consistent with the experimental results. Moreover, the relation between flame height and pyrolysis height under different shielding rates is obtained. The flame spread rate rises as the shielding rate increases. A prediction model of flame spread rate is established, and its prediction results are more accurate compared with those from previous models. The model also predicts that radiative heat transfer is the dominant heat transfer mode, accounting for 93% of the total heat transfer. This work is beneficial for fire risk assessment and fire safety design of building façade.