z-logo
Premium
Performance comparison of epoxy resins modified with diphenylphosphine oxide and DOPO
Author(s) -
Wei Zhenqian,
Gu Xintao,
Wu Jun,
Wei Min,
Yu Qing,
Xiujuan Tian,
Wang Zhongwei
Publication year - 2019
Publication title -
fire and materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 58
eISSN - 1099-1018
pISSN - 0308-0501
DOI - 10.1002/fam.2749
Subject(s) - limiting oxygen index , epoxy , diphenylphosphine oxide , diglycidyl ether , fire retardant , chemistry , curing (chemistry) , thermal stability , bisphenol a , nuclear chemistry , oxide , rosin , polymer chemistry , materials science , pyrolysis , char , organic chemistry , resin acid
Summary By curing the reaction mixture of diphenylphosphine oxide (DPO) and diglycidyl ether of bisphenol A with 4,4′‐diaminodiphenylsulfone, flame‐retardant epoxy resins (EP/DPO) were prepared. Flame‐retardant epoxy resins modified with 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) were similarly prepared (denoted as EP/DOPO). The limiting oxygen index value of pure epoxy resin, EP/DPO–P‐0.9 (with a phosphorus content of 0.9 wt%), and EP/DOPO–P‐0.9 are 23.0, 30.5, and 29.4%, respectively. EP/DPO–P‐0.9 reached a UL‐94 vertical burning test V‐0 rating, while EP/DOPO–P‐0.9 failed. The results of the cone calorimetry test, thermo‐oxidative degradation behavior study, and pyrolysis‐gas chromatography/mass spectrometry analysis indicated that both flame retardants mainly act through the gas‐phase activity mechanism. Together, the results of this study suggest that EP/DPO are high performance resins with good thermal stability, high glass transition temperature, and low water absorptivity for practical applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here